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Abstract

The prediction of extreme stock returns is highly useful in mar-
ket analysis and trading strategies. Beneish, Lee, and Tarpley (2001)
present a model using market-based signals and fundamental account-
ing data to make such predictions. In this paper, we use neural net-
works, a non-parametric predictor model, to more accurately predict
extreme stock returns. We find that a well-tuned neural network can
predict extreme stock returns as accurately as the probit model while
requiring fewer explanatory variables, which makes for a model that
is applicable to a wider range of stocks.

1 Introduction

The problem of predicting the financial markets is one that has captured

not only the dreams of men but also the minds and journals of the aca-

demic world. In their paper “Contextual Fundamental Analysis Through the

Prediction of Extreme Returns,” Beneish, Lee, and Tarpley (2001) present

a novel strategy in attempting to solve this problem: they first attempt to

predict extreme performance, that is, a stock’s performing abnormally well

or poorly in comparison with the rest of the market, and then they attempt

to separate winners from losers out of the pool of extreme performers.
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One difficulty in this two-stage analysis is the accurate prediction of ex-

treme stock returns. Beneish, Lee, and Tarpley propose a probit model using

eighteen explanatory variables drawn from firms’ recent trading characteris-

tics and financial records. We believe that their use of a parametric model,

that is, a model like probit that is based on a linear combination of its inputs,

inhibits the model’s predictive power, and propose using a neural network,

which lacks the linear limitations of parametric models, as a more suitable

alternative in predicting extreme stock performance.

In this paper, we demonstrate that a neural network can not only perform

as well as the original probit model in predicting extreme stock performance

but also do so while using under a third of the explanatory variables. Because

of the nature of financial data, which often tends to be missing, a reduction

in the number of explanatory variables used can increase the applicability of

the model to more stocks.

We begin by giving a brief outline of neural networks in Section 2. In

section 3 we discuss the methodology used in this study. Section 4 repro-

duces the probit model used in Beneish, Lee, and Tarpley and considers

some of its shortcomings, Section 5 reports on the process of selecting the

salient explanatory variables for the final neural network model, and Sec-

tion 6 discusses the refined model itself in comparison with the probit model.

We present our conclusions in Section 7.

2 Neural Networks

A neural network is a graph made up of, like any other directed graph, a

set of nodes and a set of edges where each edge originates from one node
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Figure 1 A feed-forward neural network. Nodes A and B are inputs; nodes
G and H are outputs.
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and terminates at another. A feed-forward neural network is a neural net-

work that is arranged in layers of nodes with edges only pointing “forward”

through the layers, as shown in Figure 1. Neural networks are more than just

graphs, however; they can be used to perform complex computational func-

tions. In the following section we will consider how neural networks function

and how they can be set up to perform statistical analysis like predicting

stock performance.

Each node of the neural network serves as a mathematical function, tak-

ing input values from the incoming edges and producing output into the

outgoing edges (the output then becoming input for other nodes). The node

takes a weighted sum of the input values and performs a mathematical trans-

formation on that sum, usually a logistic or step function; the result of that

transformation is the output of the node on all edges. In general the same

transformation function is used among all nodes; the weights on each edge

that are used in calculating the weighted sum are varied to allow for the

network to model different data. The problem of determining the optimum
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weights for a given data set is complex and beyond the scope of this paper,

but it essentially reduces to a general optimization problem.

A feed-forward neural network is measured in two dimensions: first, the

number of hidden layers, that is, the number of layers of nodes not including

the first layer where data is input or the last layer that produces the final

network output; second, the size of each layer, or the number of nodes in

a given layer. One of the most widely available and commonly used forms

of neural networks is the single-layer feed-forward network. Such networks

are generally simpler to implement, but more importantly numerous studies

demonstrate that a neural network with a single hidden layer is sufficient to

approximate any function given a sufficiently large size.

The ability of neural networks to approximate a wide range of functions,

including non-linear ones, is important to the study of financial statistics.

For example, intuitively one would expect that stocks with very high or very

low prices would expect marked changes in stock price, i.e., they would be

extreme performers. But a model based on linear regression, such as the

probit model, is unable to provide for a situation like this one; it can only

allow for either high prices or low prices to indicate extreme performance.

The attractiveness of non-parametric models in general and neural networks

in particular with regard to financial analysis is their ability to deal with and

appropriately model such complex interactions among the data.

3 Overview of Methodology

As stated earlier, the goal of our project was to improve the model for the

prediction of extreme stocks presented in Beneish, Lee, and Tarpley. We did
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so by first replicating their analysis and then using neural networks on the

same dataset to improve the accuracy of prediction.

3.1 Data Collection and Organization

We used data similar to that analyzed in Beneish, Lee, and Tarpley, but

were unable to construct an exact replica of their dataset. Starting from a

set of company names provided by the authors of that paper, we collected

data from the Compustat and crsp databases provided by Wharton Re-

search Data Services. We then discarded records with prices below $5 and

adr/reit/closed-end shares as done in their study, and additionally we dis-

card records with missing explanatory variables.1

For each quarter, the firms in that quarter were assigned to two groups

in a “1, 2, 2, 1, 1, 2, 2” pattern. This created two groups of firm-quarter

records, one of which was used as an estimation data sample for analysis and

the other as a holdout sample for testing that analysis.

Our dataset, after removing elements as specified above, contained 68,933

records. Beneish, Lee, and Tarpley reported 59,589 records from the same

databases we used. While the discrepancy is not surprising—questions such

as what constitutes missing data are not absolute and sources may have been

updated since when their paper was written—it does mean that we cannot

use their results directly from their report for the purpose of comparison. As

a result, we reproduce the relevant parts of their analysis in Section 4, using

our acquired data, to set our baseline of comparison.

Extreme performance is measured on a per-quarter basis. For each quar-

1The discarding of records is discussed in Section 6.2.
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ter, the stocks with returns that were within the highest or lowest 2% of

the quarter are designated extreme performers; the remaining 96% are des-

ignated “control” firms.2 This indicator was used as our dependent variable;

the independent variables were selected exactly as in the original article.

3.2 Method of Analysis

After establishing our baseline by replicating Beneish, Lee, and Tarpley’s

probit model, we will use a neural network incorporating all of the covariates

and compare its performance to the original probit model. This analysis

will indicate whether the use of a neural network provides useful results in

predicting extreme stock performance. In particular, one of the worries of

using a neural network is overfitting the data [3]. Testing against the holdout

sample will indicate whether overfitting is occurring.

In the second part of our analysis we will attempt to “clean up” the

model by eliminating explanatory variables, as an excess of inputs to a neural

network can actually decrease its predictive performance [2]. We do this by

looking at first differences for each explanatory variable from the probit model

and extracting only those for which there is a significant difference. We then

create a new neural network using this “refined” set of explanatory variables

and consider its performance in comparison to the probit model.

To generate neural networks, we use the nnet package in the statisti-

cal software package “R.” Table 1 gives the set of parameters we used in

generating the neural networks. They are provided so that the reader may

2The precise details of the categorization of extreme performance, as well as those of
the stock selection process, are outlined in Beneish, Lee, and Tarpley.
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Table 1 Parameters used in generating neural networks.

Parameter Value Description

rang 0.0001 Initial edge weights are uniformly
distributed on [–rang, rang]

size 40 Number of nodes in the hidden
layer of the network

skip true Permit formation of edges directly
from inputs to outputs

entropy true Use entropy fitting (maximum like-
lihood)

reproduce the networks we generate in this paper; future work could consider

the possibility of optimizing those parameters.

4 The Probit Model

Beneish, Lee, and Tarpley perform the classification of controls and extremes

by probit regression on the estimate sample. There is strong evidence noted

by King and Zeng that binary models such as probit suffer from bias and

inefficiency if the proportion of 0s far exceed that of 1s [5]. Probit tends to

underestimate the probability of extremes. Also, much of the control obser-

vations may have little relevance to the extreme cases of interest; including

all the controls can degrade the predictive performance of the model by in-

troducing random correlations. Figure 2 clearly shows these deficiencies of

the probit model: for all the 34,469 observations in the estimate sample, none

is predicted to have a probability of being extreme that is over 20%.
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Figure 2 Performance of the probit model on the estimation sample (left)
and then the holdout sample (right). The data are placed into bins based
on their predicted probabilities of being extreme performers. The horizontal
axis represents the fraction of stocks in each bin that are extreme performers;
the vertical axis is the average predicted probability of the bin.
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4.1 The Neural Network Model

5 Refining the Explanatory Variable Selection

In refining our selection of explanatory variables, we took first differences

based on the probabilities returned by the original probit model; these are

displayed in Figure 3. In calculating these differences, we set all of the ex-

planatory variables to their median values except for the one being tested,

which was set first at its 10% quantile and then at its 90% quantile; the

model was then simulated using these inputs to produce the probit proba-

bility distributions. The use of quantiles rather than preselected numerical

values avoids the problem that the ranges of some variables are very small

(often less than one) while the ranges of others are often in the hundreds of

thousands.
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Figure 3 First differences calculated for each explanatory variable. For each
graph, all variables were set to their median values except for the one listed,
which was set at its 10% (thin line) and 90% (thick line) quantiles.
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The graphs clearly show that the variables size, price, age, sldy, and

lsy make significant contributions to the probability of extreme performance

of a stock. The other explanatory variables do not appear, from the first

differences, to have such an impact on the prediction of extreme performance.

Based on these observations, we choose to include these five variables only

in our set of “refined” covariates.

The fact that these are the most significant variables provides insights into

the nature of extreme performers. Extreme performers tend to be smaller in

size, higher in price, younger, and losing revenues and sales.

6 A Neural Network Using Refined Covariates

We create a neural network with a hidden layer of size 40, using the five

refined covariates as inputs. Figure 4 presents a visual representation of the

success of this neural network at separating extreme performers from average

stocks. Notice that, in fitting the dataset used to train the neural network

itself, the neural network clearly outperforms the probit model in separating

out the extreme performers. For the holdout sample both appear to perform

at approximately the same level.

The fact that the neural network model outperforms the probit model on

in-sample tests but not on out-of-sample tests indicates overfitting, which is

a common problem for neural networks. However, it does help to confirm our

hypothesis that the data is well-suited to a non-linear model: the neural net-

work can fit the data more accurately with five variables than the parametric

probit model can with eighteen.
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Figure 4 Comparison of the predictive powers of the neural network with
reduced number of covariates. Each graph shows the distribution of prob-
abilities for the control firm-quarters (solid) and the extreme performance
firm-quarters (dashed). Greater separation indicates better prediction power.
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6.1 A Badness Test of Model Fit

In Beneish, Lee, and Tarpley, the performance of the probit model is analyzed

by using the following cost function:

ECM = P (E)PICI + [1− P (E)]PIICII ,

where P (E) is the prior probability of extreme performers (by definition 4%),

PI and PII are the conditional probabilities of Type I and Type II errors,

and CI and CII are the cost of those errors. A Type I error occurs when an

extreme performer is classified by the model as a control stock; a Type II

error occurs when a control stock is classified as an extreme performer. They

choose a cutoff probability that minimizes the overall cost (ECM) given a set

of Type I and Type II costs (CI and CII).

If we can show, then, that for any value of PI the value of PII using

our model is less than PII for the original probit model, we prove that our

model will always have a smaller overall cost (ECM) regardless of the values

of CI and CII . It is thus worthwhile to consider a measure of the number of

misclassified control stocks (Type II errors) for a given number of misclassified

extreme stocks (Type I errors). This is equivalent to looking at a measure of

misclassified control stocks for a given number of correctly classified extreme

stocks, since the sum of the number of correctly classified and misclassified

extreme stocks must be constant.

The measurement is conducted as follows. After fitting the out-of-sample

data to a model, we wish to make predictions as to which of the observations

are extreme performers. This is done by setting some cutoff probability c
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and taking all observations with a fitted probability above c to be predicted

extreme performers. For a given set of fitted data f , define a function bf (n)

such that, if the cutoff is set such that n real extreme performers are correctly

selected, then at least bf (n) controls will be selected as well. The badness

function for a good model should return numbers as small as possible; a

perfect model should have bf (n) = 0.

Figure 5 shows three badness functions, one for the neural net model using

only refined parameters, one for a probit model including all parameters,

and one for a probit model using only refined parameters. The badness was

calculated against the holdout sample. This is a reasonable measure of the

performance of the model, as it indicates the amount of error that will be

present in decisions made by the model.

It is evident from the graph that the neural network model is essentially

on par with the full-covariate probit model and significantly outperforms

the probit model when it only incorporates the five refined covariates. In

fact, using the neural network model over the refined-covariate probit model

reduces the average badness on the range 400 < n < 500 by 11%, from about

6,200 incorrectly selected stocks to about 5,500. In other words, if one were to

develop a trading strategy involving extreme stock returns, using the neural

network model could decrease the investment cost by 11% without affecting

the resulting profit significantly.

6.2 Why Use Fewer Explanatory Variables?

The neural network model does not, however, predict extreme stock per-

formance more accurately than the probit model using all of the explana-
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Figure 5 Graphs of the badness functions for three different models against
the holdout sample. The horizontal axis represents the number of extreme
performers that were selected correctly, and the vertical axis indicates the
number of controls that had to be selected incorrectly to achieve that number
of correctly identified extreme performers.
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tory variables. Why is it advantageous to build a model that requires fewer

data?

As mentioned in Section 3.1, much of the data was discarded as a result

of missing values. It is true that this could introduce bias, but we could also

restrict the conclusions reached by this study to those stock-quarters that

have all the necessary data available; that is, a trading strategy built out

of the results of this paper would only be valid for stocks with all the data

required to perform the analysis.

Another possible alternative would be to perform imputation on the miss-

ing data, thereby reducing the missing data bias. The problem with this sug-

gestion, however, is a problem of scale. The 68,933 observations we acquired

were selected out of 363,248 records in total, so over 80% of the data records

retrieved from the financial databases were discarded due to their missing at

least some information. As a result, imputation would be a computationally

infeasible and ultimately unsuccessful task.

Part of the advantage, then, of reducing the number of relevant covariates

is that more data can be imported into the analysis without the need for

imputation. Additionally, if fewer data are required to make a prediction,

then it is possible to make predictions on stocks that might have been missing

data needed for other models. Consequently, by using a model with fewer

covariates, we can both increase the accuracy of our model by adding more

data to it and increase the usefulness of our model by allowing it to make

predictions on more stocks.
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7 Conclusions

The goal of this paper was to present an alternate model of predicting extreme

stock performance and to demonstrate that it could make such predictions

as well as the original model while requiring fewer explanatory variables. As

we have shown, a neural network trained on only a properly selected set of

covariates can perform just as well as a standard regression model that uses

over three times the number of variables. This leads us to two conclusions:

first, that much of the data being collected to predict extreme stock returns

is unnecessary, and second, that the data is non-linear and best represented

by a non-linear model like neural networks.

One interesting technique we used in our research methodology was the

selection of significant covariates by using first differences rather than looking

at coefficients. The use of first differences provides us with two advantages.

First, because we take differences over the quantiles of actual data, we are

able to see the difference a change on the scale of the data makes. A large

probit coefficient for a given explanatory variable could mean either that

the variable is highly significant or that the values of the variable are very

small; looking at first differences highlights the former of these cases but not

the latter. Second, first differences shows us distributions for given sets of

explanatory variables, not just the mean values. It is possible—in fact, for

the s/p and d/p variables it actually occurs, as shown in Figure 3—for the

mean to shift but for the distribution to be so wide that the distributions

still mostly overlap. If the distributions found for first differences for a given

variable overlap, then the variable shouldn’t be considered significant, even

if the mean of the distributions changes. Probit coefficients cannot display
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this overlap of distributions; visualizing first differences can.

Much of the research today involves adding explanatory variables to a

model. While it is difficult to argue in general with the principle that more

data is better, more data in this case can inhibit the model due to the missing

data problem. Adding too many explanatory variables to a model obscures

its usability, as it puts a burden on the user of that model to dig up all the

data in order to make the model useful.

By considering more complex models such as neural networks, we hope

to create a model that doesn’t sacrifice predictive power but works with

the benefit of requiring less data to make those predictions, thus relieving

that burden of data collection. The five variables we select, firm size, stock

price, firm age, and reports of sales and revenue losses, should be feasible

for anyone to acquire, while variables that we discard, such as research and

development expenses and capital expenditures, may be more difficult to

acquire. A model is only as good as it is useful, and a model requiring too

many covariates cannot be very useful. It is our hope that, in the spirit of

this paper, research will strive not toward bigger models of prediction but

rather toward better ones.
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